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FOREWORD

As part of the on-going program in "Decision Control Models in

Operations Research," Mr. Charles Mosier has refined the Power Ap-

proximation for computing approximately optimal (s,S) inventory

policies. Using the approach adopted by Richard Ehrhardt (Technical

Report #7), Mr. Mosier uses regression analysis to improve the accu-

racy of an analytically derived approximation. Mr. Mosier refines

the Power Approximation by constraining the regressions to provide a

policy that (1) is homogeneous in the units chosen for demand, and

(2) has reasonable limiting behavior when the variance of demand ap-

proaches zero. The improvements are obtained with only modest sacri-

fices in total cost performance. Other related reports dealing with

this research program are given on the following pages.

Harvey M. Wagner
Principal Investigator

Richard Ehrhardt
Co-Principal Investigator
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REVISED (s,S) POWER APPROXIMATION

Charles Mosier*

- Abstract -

4This investigation reformulates an approximately optimal

algorithm for computing (s,S) inventory pol4cies. The approxima-

tion is for a single-item, periodic review model with set-up cost,

linear holding and shortage costs, fixed replenishment lead time,

and backlogging of unfilled demand.

The analysis repeats the numerical analysis process performed

to derive the Power Approximation - an approximately optimal (s,S)

policy rule. The research reported here is a modification of the

previous derivation to correct for both the non-homogeneity of the

Power Approximation and the limiting behavior of the approximation

for S-s.

The operating characteristics of the modification are nearly

as close to optimal as those of the original Power Approximation.

*School of Business Administration, The University of North

Carolina at Chapel Hill.
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1. INTRODUCTION AND SUMMARY

1.1 The Model

We consider a periodic review, single-item inventory system

where unfilled demand is backlogged, there is a fixed lead time L

between placement and delivery of an order, and demands during re-

view periods are independently and identically distributed, having

2
mean p and variance a . Replenishment costs are comprised of a

setup cost K and a unit cost c. At the end of each review period

a cost h or p is incurred for each unit on hand or backlogged,

respectively. The criterion of optimality is minimization of the

undiscounted expected cost per period over an infinite horizon.

Under these assumptions, an (s,S) policy is optimal (Iglehart

r2]), whenever inventory on hand or backlogged plus on order y

is less than or equal to s, an order S-y is placed. Algorith-

mic methods for computing optimal policies are available (Veinott

and Wagner [7]), but unfortunately, the computational effort re-

quired is prohibitive for practical implementation. Furthermore,

the computation of an optimal policy requires the complete speci-

fication of the demand distribution, which is an unrealistic as-

sumption in practical settings. Most managers, at best, have im-

precise knowledge of the mean and variance of the demand distribu-

tion. In response to these practical limitations in available

demand information, the Power Approximation was developed by

Ehrhardt [1]. The next section describes this approximation.

4
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1.2 The Power Approximation

The Power Approximation computes approximately optimal values

for (s,S) using only the mean v and variance a2 of demand.

Let PL = (L+l)h and a L (L+I)0 2  The algorithm computes

Dp 1.463p' 364 (K/h)' 498aL138  (I)

z = {D /[(l + P/h)a L]' 5 , (2)

pL

and

Sp= L + CL 32 (a 2/) 187(.220/z + 1.142 - 2.866z) . (3)

If D /ij > 1.5, let S = sp + Dp and s = sp. Otherwise, compute

p p

So = L + W (4)

where v is the solution to

Sexp(-x2 /2)/-2-Tdx = p/(p+h) (5)

The policy parameters are given by

s = minimum{Sp,So}

S = minimum{sp+DpSo}

If demands are integer valued, sp, Dp, and S0 are rounded to

the nearest integer.

1.3 Motivation for This Study

Ehrhardt [1] discussed how theoretical considerations lead to

the following form for an approximately optimal policy,
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D (2Kp/h)'5  (6)

and

S 'L + aLG(z) , (7)

where

z A D/[(l + p/h)oL ] , (8)

and G(.) is a function that depends upon the demand distribution.

The Power Approximation was derived by using these expressions as

the bases of regression analyses, where known optimal policies are

used as data. The regressions yielded parameter values in func-

*tions having the general forms (6), (7), and (8). The resulting

expressions (1), (2), and (3) are further modified by (4) and (5)

according to the empirical modification of Wagner [7]. In this

study, we focus only on modifying (1), (2), and (3) to overcome

several deficiencies in the original analysis.

The Power Approximation has three deficiencies. First, Dp

in (1) converges to zero as the variance of demand goes to zero,

whereas we would prefer that 0 converge to the Wilson Lot Size
p

Dw= (2KU/h) "5 . Second, the approximation is not homogeneous with

respect to the scaling of demand. Third, the numerical analysis

conducted for fitting the approximation erred in a minor detail.

These deficiencies are discussed in the following three sections.

1.3.1 Limit of D

The condition that lim Dp a Dw a (2Ku/h)'5  as a2 0 O,

does not hold in (1) for the Power Approximation. In fact,

*" . -2 - - .. .. r2 -" : . ]"..
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lim Dp =0 as a2 0. This deficiency is remedied by using the

following form
= au (l')(K/h)B(l + 02/I12)y (9)

Our analysis, as described in the following sections, yields the

result,

p = 1.30' 4 94(K/h)' 506 (l 2 2 116 (10)
Dp 1.01 K ' (l 'L/11 (10

Hence,

lim Dp = 1.30' 494 (K/h) 506  (11)
a2 0

which is very close to the Wilson Lot Size

Dw = 1.414p' 5 (K/h) "5  (12)

1.3.2 Non-homogeneity Deficiency

If demand is rescaled by a factor, say k, then s and D

should be transformed similarly. That is, if 1 = klj and

A= ka, then we should have that D = kD and s = ks. The Power

Approximation, (1), (2), and (3), however, are not homogeneous.

We remedy this situation in the present analysis as follows.

In [1], the regression for Dp used the model

Dp = alV(K/h)(CL)Y . (13)

In the current analysis, expression (9) is the form used; thus, we
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have replaced (aL)f with (1 + a /h2)Y . The 1 added to the

2
last term ensures that D is not zero in the limit and the p

divisor forces the last term to remain constant on a rescaling of

demand. Requiring that a + B = 1 forces homogeneity, since if

we rescale demand by k, then the new mean is k times the old

mean and the new holding cost is equal to the old holding cost

divided by k.

Homogeneity was preserved in the fit for s by requiring a

fit of the form in (7), where G(.) is dimensionless. This dif-

fers from the original Power Approximation, where 0L was

replaced with a different function of demand parameters.

1.3.3 Error in Numerical Analysis

In the original numerical analysis [l), three candidates for

z in expression (3) were considered. They were

zI = (D p/((p/h)o ), (14)

z2 = ((Dp + .5(p + a2 / 2 ))/((l + p/h)OL)) "5  (15)

and

z3 = (Dp /(( + p/h)oL)) 5 . (16)

Expression (16) was chosen over (14) and (15) because it provided

the best numerical fit to optimal policy data. Inadvertantly,

expression (15) was computed as

z2 = ((D + .5(1 + o 2/p2 ))/(1 + p/h)OL ) '  (17)

in the original analysis. In the current analysis, the correct

....I ____- . . . .._, , - ,.- - ._. .
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expression is considered. It does not, however, provide the best

numerical fit with the data.

2. EXPERIMENTAL DESIGN

The data for this study are the same as those in the original

analysis of the Power Approximation [1). An experimental grid of

288 parameter settings is specified and presented in Table 1.

Three types of demand distributions are examined, namely,

Poisson and Negative Binomial with variance-to-mean ratios of 3

and 9. Each demand distribution is evaluated with four mean

values, 2, 4, 8, and 16. Lead time has three values, 0, 2,

and 4. Since the cost function is linear in the parameters K,

p, and h, the unit holding cost value can be normalized at

unity. The unit penalty costs are 4, 9, 24, and 99, and the

set up cost values are 32 and 64. The unit replenishment cost

c need not be specified, since it does not affect the computation

of an optimal policy for an undiscounted, infinite horizon model

with complete backlogging. All combinations of the parameter

settings are included in the grid, yielding 288 points.

The optimal policy for each of the 288 settings is calculated

by the algorithm of Veinott and Wagner [7], implemented in the

software written by Kaufman [4]. The resulting 288 values of s

and S are the data utilized in the least squares regressions and

the evaluation of results. The regression analysis is performed

using the Statistical Package for the Social Sicences, second

edition (1975).

I I*
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TABLE 1

System Parameters

No. of
Factor Levels Levels

Demand Distribution Negative Binomial 3
(Variance-to-Mlean Ratio = 9)

Negative Binomial
(Variance-to-Mean Ratio = 3)

Poisson
(Variance-to-Mean Ratio = 1)

Mean Demand () 2, 4, 8, 16 4

Replenishment Lead 0, 2, 4 3
Time (L)

Replenishment Setup 32, 64 2
Cost (K)

Unit Penalty Cost 4, 9, 24, 99 4
(p)

Unit Holding Cost 1 I
(h)

&.

I

t
; ] 4



8

3. APPROXIMATIONS FOR D

Several mathematical forms were tested in seeking a new

approximation for D. We considered a linear model

D = (2KV/h) "5 + [A + B/ + Cc/ 2 ] , (18)

and a multiplicative model

D = aPa(K/h)0(l + a/P 2)Y(p/h)6 . (19)

The best fits were obtained with the multiplicative form. Initial

fits showed the variable p/h to be insignificant, so we arrived

at the final model

D ap(1(K/h)0(l + a2/2 )Y , (20)

where we require a + 0 = 1 (see Sec. 1.3.2).

Taking logarithms in (20), we have the linear expression

t Dp = L a + ot n + aZn(K/h) + y2n2 + 2/12 )

L(21)

We let a = - 0, yielding

eDp = tn a + (1 - IA + abi(K/h) + ybi(l + a2/I 2)  (22)

The final form for fitting is

OnD - tn 1 = £na + 0[tn (K/h) - t2np] + ytn (l + c2/P 2 ,  (23)

The result is

Dp = 1.3N'494(K/h)'506(1 + 2 /12)116 (24)

with R= .982.

........... .......
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4. APPROXIMATIONS FOR s

The general form for s (from [1]) is

s= alL+ a L A/z i + B + Cz.i) .(25)

Three alternative forms of z were considered:

Z, [D p/((p/h)cr1)r5, 5(26)

z [D p+ .5+ a/2 I (27)

z [DP /((l + p/h)aL)]15 .(28)

Each satisfies the assumptions of Roberts [6].

t Model 1 (z,).

Let

z = D~ /((p/h)aL))1 (29)

Using least squares regression, we have

=p Z* 973"'L + aL (.183/z + 1.063 -2.192z) ,(30)

with R2 =997.

Model 2 (z 2)

Let

Z = [D p+ .5(pi + a 2h 2 ))/((l + p/h)a 01J 5
.(31)
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Then least squares regression yields

Sp = .929iL + oL(.190/z + 1.263 - 2.410z) , (32)

with R .998.

Model 3 (z3).

* Let

z = [Dp/((l + p/h)L)'5 
(33)

Least square produces

Sp = .977P L + aL(171/z + 1.174 - 2.652z) + .36 , (34)

which we call Model 3A; this model has R2 = .997. We also consider

a fourth rounded-down version, denoted Model 3B,

Sp = .977pL + L(.171/z + 1.174 - 2.652z) . (35)

4.1 Cost Comparison and Choice of the Final Model

The 288 settings used in the regression analyses are examined

first. The expected total cost per period is calculated for each

item when controlled with each of the five policies: the optimal

policy and the four policy generating models. All policy generating

models evaluate D using expression (24), and s using expres-

sions (30), (32), (34), and (35) for Models 1, 2, 3A, and 3B,

respectively.

Let C(m), for m - 1, 2, 3A, 3B, and C* be the expected

total cost per period for an item when controlled using a policy

approximation (each of the four models) and the optimal policy,



respectively. Our criterion of performance is

Ap = {[C(m) - C*]/C}*lO0% , (36)

which is the percentage by which the expected cost exceeds the

optimal cost. The results for the 288 settings are summarized

in Table 2, which lists the number of cases having values of Ap

in various ranges.

Ap is displayed for the Power Approximation fcr comparitive

purposes. Table 3 gives cumulative percentages.

Table 4 examines the characteristics of the settings which

seem to be "outliers," that is, settings with A at least 3%.

The best of the four models seems to be Model 1. The average

error of Model 1 is lowest. The number of items of low accuracy,

for example, an error greater than 3.0%, is smallest. Finally,

for a majority of the outliers, the error for Model 1 is less than

or equal to that for the other models.

5. REVISED POWER APPROXIMATION

The algorithm for an approximately optimal (s,S) policy is as

follows. Compute

Dp = 1.301'494(K/h)'506(l + 2 h/2 116 (37)

and

Sp 973P L + aL(.183/z + 1.063 - 2.192z) , (38)

where

z [ EDp/((p/h)aL] 5 . (39)
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TABLE 2

ERROR FREQUENCIES

Model Power
AR Approx. 1 2 3A 3B

[0.0.0.1) 151 118 117 108 116

[0.1,0.5) 102 108 107 110 105

[0.5,1.0) 21 25 31 31 32

[1.0,2.0) 11 18 11 16 15
[2.0,3.0) 3 11 13 14 12

[3.0,4.0) 0 4 4 6 2

[40,5.0) 0 3 3 2 4

[5.0,6.0) 0 1 2 1 2

Avg. Error 0.35% 0.469% 0.48% 0.507% 0.484%

TABLE 3

CUMULATIVE FREQUENCY (%) OF ERRORS

Model Power
Ap Approx. 1 2 3A 38

[0.0,0.1) 52% 41% 40.6% 37.5% 40.3%

[0.1,0.5) 87.8% 78.5% 77.8% 75.7% 76.7%

[0.5,1.0) 95% 87.2% 88.5% 86.5% 86.5%

[1.0,2.0) 99% 93.4% 92.4% 92.0% 93.1%

[2.0,3.0) 100% 97.2% 96.9% 96.9% 97.2%

[3.0,4.0) 100% 98.6% 98.3% 99.0% 97.9%

[4.0,5.0) 100% 99.7% 99.3% 99.7% 99.3%

[5.0,6.0) 100%/ 100% 100% 100% 100%
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TABLE 4

OUTLIERS

Item Characteristics Error

Setting
Number C/yi i p K L 1 2 3A 3B

12 1 16 24 32 0 3.4 3.4 3.4 3.4

16 1 16 99 32 0 3.9 3.9 3.8 3.9

17 1 2 4 64 0 1.3* 4.2 4.2* 1.3

193 9 2 4 32 0 4.5 4.5 4.5 4.5

205 9 2 99 32 0 5.7 5.7 5.7 5.7

206 9 4 99 32 0 3.2 5.2 3.2 5.2

221 9 2 99 64 0 3.4 3.4 3.4 4.0

237 9 2 99 32 2 4.3 4.3 3.7 4.3

253 9 2 99 64 2 4.1 3.6 3.6 4.1

*Not an outlier for this particular model.

1~
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If D p/P > 1.5, then let S = Sp + Dp and s = Sp Otherwise

compute

S 0 'L + VOL ' (40)

where v is the solution to

vexp(-x 2/2)/vT'- dx = p/(p+h) . (41)

The policy parameters are

s = minimum {SpS0

and

S = minimum {sp+Dp,So}

If demands are integer valued, then sp,Dp, and SO  are rounded

to the nearest integer.

5.1 Robustness of Revised Power Approximation

Here we examine parameter settings other than those used in

deriving the approximation. Table 5 describes the settings for a

full-factorial design with 32 cases, having both interpolated and

extrapolated values for the parameters. With the exception of the

unit holding cost, each parameter is set at two new values: one

is an interpolation between levels in Table 1, and the other is an

extrapolation beyond previous values in Table 1. Table 6 lists

the frequencies of Ap for the 32 cases and also lists the re-

sults of the original Power Approximation. The costs for both ap-

proximations are only slightly higher than optimal; the costs for

_ T T
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TABLE 5

INTERPOLATED AND EXTRAPOLATED VALUES

No. of
Factor Levels Levels

Demand Distribution Negative Binomial 2
Variance-to-Mean Ratio = 5

Negative Binomial
Variance-to-Mean Ratio = 15

Mean Demand (j) 0.5, 7.0 2

Replenishment Lead 1, 6 2

Time (L)

Replenishment Setup 16, 48 2Time (K)

Unit Penalty Cost 49, 132 2
(p)

Unit Holding Cost 1 I
(h)

TABLE 6

ERROR FREQUENCY AND CUMULATIVE PERCENTAGE

FOR INTERPOLATED AND EXTRAPOLATED PARAMETER SETTINGS

Power Approximation Model I

AP Frequency Percentage Frequency Percentage

[0.0%,0.2%) 12 38% 8 25%

[0.2%,0.6%) 8 61% 4 37.5%

[0.6%,1.0%) 4 75% 2 43.8%

[1.0%,2.0%) 3 84% 5 59.4%

[2.0%,3.0%) 3 94% 2 65.6%

[3.0%,4.0%) 1 97% 6 84.4%

[5.0%,11.0%) 1 100% 5 100%

Im f l f ff ~ L LM
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the new approximation are slightly higher than those for the original

Power Approximation. Of the eleven settings with values of A p

greater than 3.0%, two have two parameters with extrapolated

values, four have four parameters with extrapolated values, and one

has five parameters with extrapolated values.

We also examine the extreme extrapolations for individual

parameter values. A base case is chosen for comparison. The param-

eter settings of the base case are near the midpoints of the ranges

used in the 288 settings (negative binomial demand, a2/v = 5,

= 9, L =2, h = 1, p = 49, and K = 48). The value of the

variance-to-mean ratio, lead time, and penalty cost were extrapo-

lated to 20, 10, and 199--slightly more than double the largest

values used in the 288 settings. Table 7 lists the parameter

settings and the resulting Ap for each of the extrapolations for

both the Power Approximation and Model 1.

We see in all cases that the Power Approximation yields total

costs within 1% of optimal, and Model 1 has only one case of

slightly higher costs.

6. CONCLUSIONS

We have derived an approximately optimal policy that is easily

computed, requires only the mean and variance of the demand distri-

bution, and provides a good approximation to optimality over a wide

range of parameter settings. The approximation is accurate when com-

pared to optimal and is only slightly more costly than the original

Power Approximation due to the added constraints ensuring homogeneity

and the proper limit for approximation of D.

n I
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TABLE 7

SINGLE PARAMETER EXTRAPOLATIONS

Base Case: Negative Binomial Demand
(Variance-to-Mean Ratio = 5,

= 9, L = 2, p = 49, K =48)

Power
Extrapolated Value Approximation Model 1

jp tp

Variance-to-Mean 0.0% 1.06%
Ratio 20

20 0.10% 0.01%

30 0.21% 0.14%

40 0.18% 0.16%

K =20 0.11% 0.00%

15 0.28% 0.16%

9 0.63% 0.43%

P = 132 0.15% 0.02%

199 0.50% 0.18%

L = 10 0.02% 0.03%

*
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